
■ Dreiecke Formelsammlung | Merkblatt:

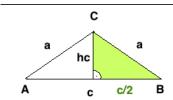
Übungsblatt

1. rechtwinkliges Dreieck: @www.mein-lernen.at

Formeln:

Flächeninhalt: $A = a \cdot b : 2$ oder $A = c \cdot h_c : 2$

Umfang: U = a + b + c Winkelsumme: $\alpha + \beta + \gamma = 180^{\circ}$


Umkreisradius: r = c : 2 Inkreisradius: $\rho = (a \cdot b) : U$

Pythagoras:

Hypotenuse $c^2 = a^2 + b^2$ Kathete $a^2 = c^2 - b^2$ Kathete $b^2 = c^2 - a^2$

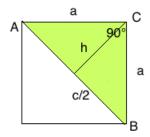
Höhensatz: $h^2 = p \cdot q$ Kathetensatz 1: $a^2 = c \cdot p$ Kathetensatz 2: $b^2 = c \cdot q$

2. gleichschenkliges Dreieck:

Formeln:

Flächeninhalt: $A = a \cdot h_a$: 2 oder $A = c \cdot h_c$: 2

Umfang: $U = 2 \cdot a + c$

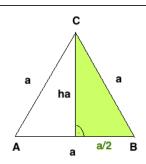

■ Dreiecke Formelsammlung | Merkblatt:

Pythagoras:

Hypotenuse: $a^2 = h_c^2 + (c/2)^2$

Kathete 1: $(c/2)^2 = a^2 - h_c^2$ Kathete 2: $h_c^2 = a^2 - (c/2)^2$

3. gleichschenklig-rechtwinkliges Dreieck


Formeln/Pythagoras:

Flächeninhalt: $A = c \cdot h_c$: 2 oder: $A = a^2$: 2 oder: $A = c^2$: 4

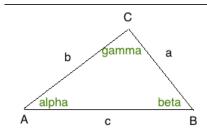
Umfang: $U = 2 \cdot a + c$ oder: $U = a \cdot (2 + \sqrt{2})$

Basis $c = a \cdot \sqrt{2}$ Höhe $h_c = c : 2$ oder $h_c = a \cdot \sqrt{2} : 2$

4. gleichseitiges Dreieck:

Formeln:

Flächeninhalt: $A = a^2/4 \cdot \sqrt{3}$ Umfang: $U = 3 \cdot a$


Höhe: $h_a = a/2 \cdot \sqrt{3}$ Inkreis = $h_a \cdot \frac{1}{3}$ Umkreis = $h_a \cdot \frac{2}{3}$

Dreiecke Formelsammlung | Merkblatt:

Pythagoras:

$$a^2 = h_a^2 + (a/_2)^2$$

5. allgemeines Dreieck:

Formeln:

Flächeninhalt: $A = a \cdot h_a : 2$ oder $A = b \cdot h_b : 2$ oder $A = c \cdot h_c : 2$

Umfang: U = a + b + c

Inkreisradius: $\rho = 2 \cdot A$

Umkreisradius: $r = \underline{a \cdot b \cdot c}$ $4 \cdot A$